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CS 188: Artificial Intelligence 
 

Review of Utility, MDPs, RL, 
Bayes’ nets 

 
DISCLAIMER: It is insufficient to simply study these slides, 
they are merely meant as a quick refresher of the high-level 
ideas covered.  You need to study all materials covered in 

lecture, section, assignments and projects ! 

 
Pieter Abbeel – UC Berkeley 

Many slides adapted from Dan Klein 

Preferences 
§  An agent must have 

preferences among: 
§  Prizes: A, B, etc. 
§  Lotteries: situations with 

uncertain prizes 

§  Notation: 
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Rational Preferences 
§  Preferences of a rational agent must obey constraints. 

§  The axioms of rationality: 

§  Theorem: Rational preferences imply behavior 
describable as maximization of expected utility 3 

MEU Principle 
§  Theorem: 

§  [Ramsey, 1931; von Neumann & Morgenstern, 1944] 
§  Given any preferences satisfying these constraints, there exists 

a real-valued function U such that: 

§  Maximum expected utility (MEU) principle: 
§  Choose the action that maximizes expected utility 
§  Note: an agent can be entirely rational (consistent with MEU) 

without ever representing or manipulating utilities and 
probabilities 

§  E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner 
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Recap MDPs and RL 
§  Markov Decision Processes (MDPs) 

§  Formalism  (S, A, T, R, gamma)  
§  Solution: policy pi which describes action for each state 
§  Value Iteration   (vs. Expectimax --- VI more efficient through dynamic 

programming)  
§  Policy Evaluation and Policy Iteration 

§  Reinforcement Learning (don’t know T and R) 
§  Model-based Learning: estimate T and R first 
§  Model-free Learning: learn without estimating T or R 

§  Direct Evaluation  [performs policy evaluation] 
§  Temporal Difference Learning [performs policy evaluation] 
§  Q-Learning [learns optimal state-action value function Q*] 
§  Policy Search [learns optimal policy from subset of all policies] 

§  Exploration 

§  Function approximation --- generalization 
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Markov Decision Processes 
§  An MDP is defined by: 

§  A set of states s ∈ S 
§  A set of actions a ∈ A 
§  A transition function T(s,a,s’) 

§  Prob that a from s leads to s’ 
§  i.e., P(s’ | s,a) 
§  Also called the model 

§  A reward function R(s, a, s’)  
§  Sometimes just R(s) or R(s’) 

§  A start state (or distribution) 
§  Maybe a terminal state 

§  MDPs are a family of non-
deterministic search problems 
§  Reinforcement learning: MDPs 

where we don’t know the 
transition or reward functions 6 
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What is Markov about MDPs? 
§  “Markov” generally means that given the present state, 

the future and the past are independent 

§  For Markov decision processes, “Markov” means: 

§  Can make this happen by proper choice of state space 
 

Value Iteration 
§  Idea: 

§  Vi
*(s) : the expected discounted sum of rewards accumulated when 

starting from state s and acting optimally for a horizon of i time steps. 
§  Value iteration: 

§  Start with V0
*(s) = 0, which we know is right (why?) 

§  Given Vi
*, calculate the values for all states for horizon i+1: 

§  This is called a value update or Bellman update 
§  Repeat until convergence 

§  Theorem: will converge to unique optimal values 
§  Basic idea: approximations get refined towards optimal values 
§  Policy may converge long before values do 
§  At convergence, we have found the optimal value function V* for the 

discounted infinite horizon problem, which satisfies the Bellman 
equations: 8 

Complete Procedure 

§  1. Run value iteration (off-line) 
§  This results in finding V* 

§  2. Agent acts.  At time t the agent is in state st 
and takes the action at: 
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Policy Iteration 
§  Policy evaluation: with fixed current policy π, find values 

with simplified Bellman updates: 
§  Iterate for i = 0, 1, 2, … until values converge 

§  Policy improvement: with fixed utilities, find the best 
action according to one-step look-ahead 

§  Will converge (policy will not change) and resulting policy 
optimal 10 

Sample-Based Policy Evaluation? 

§  Who needs T and R?  Approximate the 
expectation with samples (drawn from T!) 
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π(s) 

s

s, π(s) 

s1’ s2’ s3’ 
s, π(s),s’ 

s
’ 

Almost!  (i) Will only be in 
state s once and then land 
in s’ hence have only one 
sample à have to keep all 
samples around? (ii) Where 
do we get value for s’? 

Temporal-Difference Learning 
§  Big idea: learn from every experience! 

§  Update V(s) each time we experience (s,a,s’,r) 
§  Likely s’ will contribute updates more often 
 

§  Temporal difference learning 
§  Policy still fixed! 
§  Move values toward value of whatever 

successor occurs: running average! 
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π(s) 

s

s, π(s) 

s’ 

Sample of V(s): 

Update to V(s): 

Same update: 
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Exponential Moving Average 
§  Exponential moving average  

§  Makes recent samples more important 

§  Forgets about the past (distant past values were wrong anyway) 
§  Easy to compute from the running average  

 

§  Decreasing learning rate can give converging averages 
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Detour: Q-Value Iteration 
§  Value iteration: find successive approx optimal values 

§  Start with V0(s) = 0, which we know is right (why?) 
§  Given Vi, calculate the values for all states for depth i+1: 

§  But Q-values are more useful! 
§  Start with Q0(s,a) = 0, which we know is right (why?) 
§  Given Qi, calculate the q-values for all q-states for depth i+1: 
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Q-Learning 
§  Learn Q*(s,a) values 

§  Receive a sample (s,a,s’,r) 
§  Consider your new sample estimate: 

§  Incorporate the new estimate into a running average: 

§  Amazing result: Q-learning converges to optimal policy 
§  If you explore enough 
§  If you make the learning rate small enough but not decrease it 

too quickly! 

§  Neat property: off-policy learning 
§  learn optimal policy without following it 
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Exploration Functions 
§  Simplest: random actions (ε greedy) 

§  Every time step, flip a coin 
§  With probability ε, act randomly 
§  With probability 1-ε, act according to current policy 
§  Problems with random actions? 

§  You do explore the space, but keep thrashing around once learning 
is done 

§  One solution: lower ε over time 

§  Exploration functions 
§  Explore areas whose badness is not (yet) established 
§  Take a value estimate and a count, and returns an optimistic 

utility, e.g.                                    (exact form not important) 

now becomes: 
Qi+1(s, a) ← (1− α)Qi(s, a) + α

�
R(s, a, s�) + γmax

a�
Qi(s

�, a�)
�

Qi+1(s, a) ← (1− α)Qi(s, a) + α
�
R(s, a, s�) + γmax

a�
f(Qi(s

�, a�), N(s�, a�))
�

Feature-Based Representations 
§  Solution: describe a state using 

a vector of features 
§  Features are functions from states 

to real numbers (often 0/1) that 
capture important properties of the 
state 

§  Example features: 
§  Distance to closest ghost 
§  Distance to closest dot 
§  Number of ghosts 
§  1 / (dist to dot)2 

§  Is Pacman in a tunnel? (0/1) 
§  …… etc. 

§  Can also describe a q-state (s, a) 
with features (e.g. action moves 
closer to food) 
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Linear Feature Functions 

§  Using a feature representation, we can write a 
q function (or value function) for any state 
using a few weights: 

§  Advantage: our experience is summed up in a 
few powerful numbers 

§  Disadvantage: states may share features but 
be very different in value! 

18 
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Policy Search 
§  Problem: often the feature-based policies that work well 

aren’t the ones that approximate V / Q best 
§  Solution: learn the policy that maximizes rewards rather 

than the value that predicts rewards 
§  This is the idea behind policy search, such as what 

controlled the upside-down helicopter 
§  Simplest policy search: 

§  Start with an initial linear value function or Q-function 
§  Nudge each feature weight up and down and see if your policy is 

better than before 

§  Problems: 
§  How do we tell the policy got better? 
§  Need to run many sample episodes! 
§  If there are a lot of features, this can be impractical 
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Probability recap 
§  Conditional probability 

§  Product rule 

§  Chain rule  

§  X, Y independent iff: 
 equivalently, iff: 
 equivalently, iff:  

§  X and Y are conditionally independent given Z iff: 

  equivalently, iff: 
  equivalently, iff: 21 

∀x, y : P (x|y) = P (x)

∀x, y, z : P (x|y, z) = P (x|z)
∀x, y, z : P (y|x, z) = P (y|z)

∀x, y : P (y|x) = P (y)

Inference by Enumeration 
§  P(sun)? 

§  P(sun | winter)? 

§  P(sun | winter, hot)? 

S T W P 
summer hot sun 0.30 
summer hot rain 0.05 
summer cold sun 0.10 
summer cold rain 0.05 
winter hot sun 0.10 
winter hot rain 0.05 
winter cold sun 0.15 
winter cold rain 0.20 
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Bayes’ Nets Recap 
§  Representation 

§ Chain rule -> Bayes’ net = DAG + CPTs 

§  Conditional Independences 
§ D-separation 

§  Probabilistic Inference 
§  Enumeration (exact, exponential complexity) 
§  Variable elimination (exact, worst-case 

exponential complexity, often better) 
§  Probabilistic inference is NP-complete 
§  Sampling (approximate) 23 

Chain Rule à Bayes net 
§  Chain rule: can always write any joint distribution as an 

incremental product of conditional distributions 

§  Bayes nets: make conditional independence assumptions of the 
form: 

 giving us: 

24 

P (xi|x1 · · ·xi−1) = P (xi|parents(Xi)) B E 

A 
J M 
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Probabilities in BNs 
§  Bayes’ nets implicitly encode joint distributions 

§  As a product of local conditional distributions 
§  To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together: 

§  Example: 

§  This lets us reconstruct any entry of the full joint 
§  Not every BN can represent every joint distribution 

§  The topology enforces certain conditional independencies 
25 

Example: Alarm Network 

Burglary Earthqk 

Alarm 

John 
calls 

Mary 
calls 

B P(B) 

+b 0.001 

¬b 0.999 

E P(E) 

+e 0.002 

¬e 0.998 

B E A P(A|B,E) 

+b +e +a 0.95 
+b +e ¬a 0.05 
+b ¬e +a 0.94 
+b ¬e ¬a 0.06 
¬b +e +a 0.29 
¬b +e ¬a 0.71 
¬b ¬e +a 0.001 
¬b ¬e ¬a 0.999 

A J P(J|A) 
+a +j 0.9 
+a ¬j 0.1 
¬a +j 0.05 
¬a ¬j 0.95 

A M P(M|A) 
+a +m 0.7 
+a ¬m 0.3 
¬a +m 0.01 
¬a ¬m 0.99 

Size of a Bayes’ Net for 

§  How big is a joint distribution over N Boolean variables? 
2N 

§  Size of representation if we use the chain rule 

    2N 

§  How big is an N-node net if nodes have up to k parents? 

O(N * 2k+1) 
 
§  Both give you the power to calculate 
§  BNs:  

§  Huge space savings! 
§  Easier to elicit local CPTs 
§  Faster to answer queries 27 

Bayes Nets: Assumptions 
§  Assumptions made by specifying the graph: 

§  Given a Bayes net graph additional conditional 
independences can be read off directly from the graph 

§  Question: Are two nodes guaranteed to be independent given 
certain evidence? 

§  If no, can prove with a counter example 
§  I.e., pick a set of CPT’s, and show that the independence 

assumption is violated by the resulting distribution 

§  If yes, can prove with 
§  Algebra (tedious)  
§  D-separation (analyzes graph) 

28 

P (xi|x1 · · ·xi−1) = P (xi|parents(Xi))

D-Separation 
§  Question: Are X and Y 

conditionally independent 
given evidence vars {Z}? 
§  Yes, if X and Y “separated” by Z 
§  Consider all (undirected) paths 

from X to Y 

§  No active paths = independence! 

§  A path is active if each triple 
is active: 
§  Causal chain A → B → C where B 

is unobserved (either direction) 
§  Common cause A ← B → C 

where B is unobserved 
§  Common effect (aka v-structure) 

 A → B ← C where B or one of its 
descendents is observed 
  

§  All it takes to block a path is 
a single inactive segment 
 

  

Active Triples Inactive Triples 

D-Separation 

§  Given query          
§  Shade all evidence nodes 
§  For all (undirected!) paths between and  

§ Check whether path is active 
§  If active return 

  

§  (If reaching this point all paths have been 
checked and shown inactive) 
§ Return  

30 

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

? 

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}
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Example 

R 

T 

B 

D 

L 

T’ 

Yes 

Yes 

Yes 
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All Conditional Independences 

§  Given a Bayes net structure, can run d-
separation to build a complete list of 
conditional independences that are 
necessarily true of the form 

§  This list determines the set of probability 
distributions that can be represented by 
Bayes’ nets with this graph structure  
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Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

Topology Limits Distributions 
§  Given some graph 

topology G, only certain 
joint distributions can 
be encoded 

§  The graph structure 
guarantees certain 
(conditional) 
independences 

§  (There might be more 
independence) 

§  Adding arcs increases 
the set of distributions, 
but has several costs 

§  Full conditioning can 
encode any distribution 

X 

Y 

Z 

X 
Y 

Z 

X 
Y 

Z 
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X 
Y 

Z X 
Y 

Z 

X 
Y 

Z X 
Y 

Z X 
Y 

Z 

X 

Y 

Z 

X 

Y 

Z 

{X ⊥⊥ Z | Y }

{X ⊥⊥ Y,X ⊥⊥ Z, Y ⊥⊥ Z,

X ⊥⊥ Z | Y,X ⊥⊥ Y | Z, Y ⊥⊥ Z | X}

{}

Inference by Enumeration 

§  Given unlimited time, inference in BNs is easy 
§  Recipe: 

§  State the marginal probabilities you need 
§  Figure out ALL the atomic probabilities you need 
§  Calculate and combine them 

§  Example: 

34 

B E 

A 

J M 

Example: Enumeration 
§  In this simple method, we only need the BN to 

synthesize the joint entries 
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Variable Elimination 

§  Why is inference by enumeration so slow? 
§  You join up the whole joint distribution before you sum 

out the hidden variables 
§  You end up repeating a lot of work! 

§  Idea: interleave joining and marginalizing! 
§  Called “Variable Elimination” 
§  Still NP-hard, but usually much faster than inference 

by enumeration 

36 
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§  Track objects called factors 
§  Initial factors are local CPTs (one per node) 

§  Any known values are selected 
§  E.g. if we know                  , the initial factors are 

§  VE: Alternately join factors and eliminate variables 37 

Variable Elimination Outline 

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+t	   +l	   0.3	  
-‐t	   +l	   0.1	  

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

T 

R 

L 

Variable Elimination Example 
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Sum out R 

T 

L 

+r	   +t	   0.08	  
+r	   -‐t	   0.02	  
-‐r	   +t	   0.09	  
-‐r	   -‐t	   0.81	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+t	   0.17	  
-‐t	   0.83	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

T 

R 

L 

+r	   0.1	  
-‐r	   0.9	  

+r	   +t	   0.8	  
+r	   -‐t	   0.2	  
-‐r	   +t	   0.1	  
-‐r	   -‐t	   0.9	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

Join R 

R, T 

L 

Variable Elimination Example 

Join T Sum out T 
T, L L 

* VE is variable elimination 

T 

L 

+t	   0.17	  
-‐t	   0.83	  

+t	   +l	   0.3	  
+t	   -‐l	   0.7	  
-‐t	   +l	   0.1	  
-‐t	   -‐l	   0.9	  

+t	   +l	   0.051	  
+t	   -‐l	   0.119	  
-‐t	   +l	   0.083	  
-‐t	   -‐l	   0.747	  

+l	   0.134	  
-‐l	   0.886	  

Example 

Choose A 

40 

Example 

Choose E 

Finish with B 

Normalize 
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General Variable Elimination 
§  Query: 

§  Start with initial factors: 
§  Local CPTs (but instantiated by evidence) 

§  While there are still hidden variables (not Q or evidence): 
§  Pick a hidden variable H 
§  Join all factors mentioning H 
§  Eliminate (sum out) H 

§  Join all remaining factors and normalize 

42 
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Another (bit more abstractly worked 
out) Variable Elimination Example 

43 

Computational complexity critically depends on the largest factor being 
generated in this process.  Size of factor = number of entries in table.  In 
example above (assuming binary) all factors generated are of size 2 --- as 
they all only have one variable (Z, Z, and X3 respectively).  

§  For the query P(Xn|y1,…,yn) work through the following two different 
orderings as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, 
Z.  What is the size of the maximum factor generated for each of the 
orderings? 

§  Answer: 2n versus 2 (assuming binary) 
§  In general: the ordering can greatly affect efficiency.   

Variable Elimination Ordering 

44 

… 

… 

Computational and Space 
Complexity of Variable Elimination 

§  The computational and space complexity of variable 
elimination is determined by the largest factor 

§  The elimination ordering can greatly affect the size of the 
largest factor.   
§  E.g., previous slide’s example 2n vs. 2 

§  Does there always exist an ordering that only results in 
small factors? 
§  No! 

45 

Worst Case Complexity? 
§  Consider the 3-SAT clause:   

       which can be encoded by the following Bayes’ net: 

§  If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution. 
§  Subtlety: why the cascaded version of the AND rather than feeding all OR clauses into a single 

AND?  Answer: a single AND would have an exponentially large CPT, whereas with representation 
above the Bayes’ net has small CPTs only.  

§  Hence inference in Bayes’ nets is NP-hard.  No known efficient probabilistic inference in general. 
46 

… 

… 

Polytrees 

§  A polytree is a directed graph with no 
undirected cycles 

§  For poly-trees you can always find an 
ordering that is efficient  
§  Try it!! 

§  Cut-set conditioning for Bayes’ net 
inference 
§ Choose set of variables such that if removed 

only a polytree remains 
§  Think about how the specifics would work out! 47 

Approximate Inference: Sampling 
§  Basic idea: 

§  Draw N samples from a sampling distribution S 
§  Compute an approximate posterior probability 
§  Show this converges to the true probability P 

§  Why? Faster than computing the exact answer 

§  Prior sampling: 
§  Sample ALL variables in topological order as this can be done quickly 

§  Rejection sampling for query      
§  = like prior sampling, but reject when a variable is sampled inconsistent 

with the query, in this case when a variable Ei is sampled differently 
from ei 

§  Likelihood weighting for query 
§  = like prior sampling but variables Ei are not sampled, when it’s their 

turn, they get set to ei, and the sample gets weighted by  
 P(ei | value of parents(ei) in current sample) 

§  Gibbs sampling: repeatedly samples each non-evidence variable 
conditioned on all other variables à can incorporate downstream evidence  

  
 

48 
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Prior Sampling 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 

49 

+c	   0.5	  
-‐c	   0.5	  

+c	  
	  

+s	   0.1	  
-‐s	   0.9	  

-‐c	  
	  

+s	   0.5	  
-‐s	   0.5	  

+c	  
	  

+r	   0.8	  
-‐r	   0.2	  

-‐c	  
	  

+r	   0.2	  
-‐r	   0.8	  

+s	  
	  
	  
	  

+r	  
	  

+w	   0.99	  
-‐w	   0.01	  

-‐r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐s	  
	  
	  
	  

+r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐r	  
	  

+w	   0.01	  
-‐w	   0.99	  

Samples: 

+c, -s, +r, +w 
-c, +s, -r, +w 

… 

Example 
§  We’ll get a bunch of samples from the BN: 

 +c, -s, +r, +w 
 +c, +s, +r, +w 
 -c, +s, +r,  -w 
 +c, -s, +r, +w 
 -c,  -s,  -r, +w 

§  If we want to know P(W) 
§  We have counts <+w:4, -w:1> 
§  Normalize to get P(W) = <+w:0.8, -w:0.2> 
§  This will get closer to the true distribution with more samples 
§  Can estimate anything else, too 
§  What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)? 
§  Fast: can use fewer samples if less time 

Cloudy 

Sprinkler Rain 

WetGrass 

C 

S R 

W 
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Likelihood Weighting 
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+c	   0.5	  
-‐c	   0.5	  

+c	  
	  

+s	   0.1	  
-‐s	   0.9	  

-‐c	  
	  

+s	   0.5	  
-‐s	   0.5	  

+c	  
	  

+r	   0.8	  
-‐r	   0.2	  

-‐c	  
	  

+r	   0.2	  
-‐r	   0.8	  

+s	  
	  
	  
	  

+r	  
	  

+w	   0.99	  
-‐w	   0.01	  

-‐r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐s	  
	  
	  
	  

+r	  
	  

+w	   0.90	  
-‐w	   0.10	  

-‐r	  
	  

+w	   0.01	  
-‐w	   0.99	  

Samples: 

+c, +s, +r, +w 
… 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 

Likelihood Weighting 
§  Sampling distribution if z sampled and e fixed evidence 

§  Now, samples have weights 

§  Together, weighted sampling distribution is consistent 

Cloudy 

R 

C 

S 

W 
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Gibbs Sampling 
§  Idea: instead of sampling from scratch, create samples 

that are each like the last one. 

§  Procedure: resample one variable at a time, conditioned 
on all the rest, but keep evidence fixed.   

§  Properties: Now samples are not independent (in fact 
they’re nearly identical), but sample averages are still 
consistent estimators! 

§  What’s the point: both upstream and downstream 
variables condition on evidence. 
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