
1

CS 188: Artificial Intelligence

Review of Utility, MDPs, RL,
Bayes’ nets

DISCLAIMER: It is insufficient to simply study these slides,
they are merely meant as a quick refresher of the high-level
ideas covered. You need to study all materials covered in

lecture, section, assignments and projects !

Pieter Abbeel – UC Berkeley

Many slides adapted from Dan Klein

Preferences
§  An agent must have

preferences among:
§  Prizes: A, B, etc.
§  Lotteries: situations with

uncertain prizes

§  Notation:

2

Rational Preferences
§  Preferences of a rational agent must obey constraints.

§  The axioms of rationality:

§  Theorem: Rational preferences imply behavior
describable as maximization of expected utility 3

MEU Principle
§  Theorem:

§  [Ramsey, 1931; von Neumann & Morgenstern, 1944]
§  Given any preferences satisfying these constraints, there exists

a real-valued function U such that:

§  Maximum expected utility (MEU) principle:
§  Choose the action that maximizes expected utility
§  Note: an agent can be entirely rational (consistent with MEU)

without ever representing or manipulating utilities and
probabilities

§  E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner
4

Recap MDPs and RL
§  Markov Decision Processes (MDPs)

§  Formalism (S, A, T, R, gamma)
§  Solution: policy pi which describes action for each state
§  Value Iteration (vs. Expectimax --- VI more efficient through dynamic

programming)
§  Policy Evaluation and Policy Iteration

§  Reinforcement Learning (don’t know T and R)
§  Model-based Learning: estimate T and R first
§  Model-free Learning: learn without estimating T or R

§  Direct Evaluation [performs policy evaluation]
§  Temporal Difference Learning [performs policy evaluation]
§  Q-Learning [learns optimal state-action value function Q*]
§  Policy Search [learns optimal policy from subset of all policies]

§  Exploration

§  Function approximation --- generalization
5

Markov Decision Processes
§  An MDP is defined by:

§  A set of states s ∈ S
§  A set of actions a ∈ A
§  A transition function T(s,a,s’)

§  Prob that a from s leads to s’
§  i.e., P(s’ | s,a)
§  Also called the model

§  A reward function R(s, a, s’)
§  Sometimes just R(s) or R(s’)

§  A start state (or distribution)
§  Maybe a terminal state

§  MDPs are a family of non-
deterministic search problems
§  Reinforcement learning: MDPs

where we don’t know the
transition or reward functions 6

2

What is Markov about MDPs?
§  “Markov” generally means that given the present state,

the future and the past are independent

§  For Markov decision processes, “Markov” means:

§  Can make this happen by proper choice of state space

Value Iteration
§  Idea:

§  Vi
*(s) : the expected discounted sum of rewards accumulated when

starting from state s and acting optimally for a horizon of i time steps.
§  Value iteration:

§  Start with V0
*(s) = 0, which we know is right (why?)

§  Given Vi
*, calculate the values for all states for horizon i+1:

§  This is called a value update or Bellman update
§  Repeat until convergence

§  Theorem: will converge to unique optimal values
§  Basic idea: approximations get refined towards optimal values
§  Policy may converge long before values do
§  At convergence, we have found the optimal value function V* for the

discounted infinite horizon problem, which satisfies the Bellman
equations: 8

Complete Procedure

§  1. Run value iteration (off-line)
§  This results in finding V*

§  2. Agent acts. At time t the agent is in state st
and takes the action at:

9

Policy Iteration
§  Policy evaluation: with fixed current policy π, find values

with simplified Bellman updates:
§  Iterate for i = 0, 1, 2, … until values converge

§  Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

§  Will converge (policy will not change) and resulting policy
optimal 10

Sample-Based Policy Evaluation?

§  Who needs T and R? Approximate the
expectation with samples (drawn from T!)

11

π(s)

s

s, π(s)

s1’ s2’ s3’
s, π(s),s’

s
’

Almost! (i) Will only be in
state s once and then land
in s’ hence have only one
sample à have to keep all
samples around? (ii) Where
do we get value for s’?

Temporal-Difference Learning
§  Big idea: learn from every experience!

§  Update V(s) each time we experience (s,a,s’,r)
§  Likely s’ will contribute updates more often

§  Temporal difference learning
§  Policy still fixed!
§  Move values toward value of whatever

successor occurs: running average!

12

π(s)

s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

3

Exponential Moving Average
§  Exponential moving average

§  Makes recent samples more important

§  Forgets about the past (distant past values were wrong anyway)
§  Easy to compute from the running average

§  Decreasing learning rate can give converging averages

13

Detour: Q-Value Iteration
§  Value iteration: find successive approx optimal values

§  Start with V0(s) = 0, which we know is right (why?)
§  Given Vi, calculate the values for all states for depth i+1:

§  But Q-values are more useful!
§  Start with Q0(s,a) = 0, which we know is right (why?)
§  Given Qi, calculate the q-values for all q-states for depth i+1:

14

Q-Learning
§  Learn Q*(s,a) values

§  Receive a sample (s,a,s’,r)
§  Consider your new sample estimate:

§  Incorporate the new estimate into a running average:

§  Amazing result: Q-learning converges to optimal policy
§  If you explore enough
§  If you make the learning rate small enough but not decrease it

too quickly!

§  Neat property: off-policy learning
§  learn optimal policy without following it

15

Exploration Functions
§  Simplest: random actions (ε greedy)

§  Every time step, flip a coin
§  With probability ε, act randomly
§  With probability 1-ε, act according to current policy
§  Problems with random actions?

§  You do explore the space, but keep thrashing around once learning
is done

§  One solution: lower ε over time

§  Exploration functions
§  Explore areas whose badness is not (yet) established
§  Take a value estimate and a count, and returns an optimistic

utility, e.g. (exact form not important)

now becomes:
Qi+1(s, a) ← (1− α)Qi(s, a) + α

�
R(s, a, s�) + γmax

a�
Qi(s

�, a�)
�

Qi+1(s, a) ← (1− α)Qi(s, a) + α
�
R(s, a, s�) + γmax

a�
f(Qi(s

�, a�), N(s�, a�))
�

Feature-Based Representations
§  Solution: describe a state using

a vector of features
§  Features are functions from states

to real numbers (often 0/1) that
capture important properties of the
state

§  Example features:
§  Distance to closest ghost
§  Distance to closest dot
§  Number of ghosts
§  1 / (dist to dot)2

§  Is Pacman in a tunnel? (0/1)
§  …… etc.

§  Can also describe a q-state (s, a)
with features (e.g. action moves
closer to food)

17

Linear Feature Functions

§  Using a feature representation, we can write a
q function (or value function) for any state
using a few weights:

§  Advantage: our experience is summed up in a
few powerful numbers

§  Disadvantage: states may share features but
be very different in value!

18

4

0 2 4 6 8 10 12 14 16 18 20 -15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting

19

Policy Search
§  Problem: often the feature-based policies that work well

aren’t the ones that approximate V / Q best
§  Solution: learn the policy that maximizes rewards rather

than the value that predicts rewards
§  This is the idea behind policy search, such as what

controlled the upside-down helicopter
§  Simplest policy search:

§  Start with an initial linear value function or Q-function
§  Nudge each feature weight up and down and see if your policy is

better than before

§  Problems:
§  How do we tell the policy got better?
§  Need to run many sample episodes!
§  If there are a lot of features, this can be impractical

20

Probability recap
§  Conditional probability

§  Product rule

§  Chain rule

§  X, Y independent iff:
 equivalently, iff:
 equivalently, iff:

§  X and Y are conditionally independent given Z iff:

 equivalently, iff:
 equivalently, iff: 21

∀x, y : P (x|y) = P (x)

∀x, y, z : P (x|y, z) = P (x|z)
∀x, y, z : P (y|x, z) = P (y|z)

∀x, y : P (y|x) = P (y)

Inference by Enumeration
§  P(sun)?

§  P(sun | winter)?

§  P(sun | winter, hot)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20

22

Bayes’ Nets Recap
§  Representation

§ Chain rule -> Bayes’ net = DAG + CPTs

§  Conditional Independences
§ D-separation

§  Probabilistic Inference
§  Enumeration (exact, exponential complexity)
§  Variable elimination (exact, worst-case

exponential complexity, often better)
§  Probabilistic inference is NP-complete
§  Sampling (approximate) 23

Chain Rule à Bayes net
§  Chain rule: can always write any joint distribution as an

incremental product of conditional distributions

§  Bayes nets: make conditional independence assumptions of the
form:

 giving us:

24

P (xi|x1 · · ·xi−1) = P (xi|parents(Xi)) B E

A
J M

5

Probabilities in BNs
§  Bayes’ nets implicitly encode joint distributions

§  As a product of local conditional distributions
§  To see what probability a BN gives to a full assignment, multiply

all the relevant conditionals together:

§  Example:

§  This lets us reconstruct any entry of the full joint
§  Not every BN can represent every joint distribution

§  The topology enforces certain conditional independencies
25

Example: Alarm Network

Burglary Earthqk

Alarm

John
calls

Mary
calls

B P(B)

+b 0.001

¬b 0.999

E P(E)

+e 0.002

¬e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e ¬a 0.05
+b ¬e +a 0.94
+b ¬e ¬a 0.06
¬b +e +a 0.29
¬b +e ¬a 0.71
¬b ¬e +a 0.001
¬b ¬e ¬a 0.999

A J P(J|A)
+a +j 0.9
+a ¬j 0.1
¬a +j 0.05
¬a ¬j 0.95

A M P(M|A)
+a +m 0.7
+a ¬m 0.3
¬a +m 0.01
¬a ¬m 0.99

Size of a Bayes’ Net for

§  How big is a joint distribution over N Boolean variables?
2N

§  Size of representation if we use the chain rule

 2N

§  How big is an N-node net if nodes have up to k parents?

O(N * 2k+1)

§  Both give you the power to calculate
§  BNs:

§  Huge space savings!
§  Easier to elicit local CPTs
§  Faster to answer queries 27

Bayes Nets: Assumptions
§  Assumptions made by specifying the graph:

§  Given a Bayes net graph additional conditional
independences can be read off directly from the graph

§  Question: Are two nodes guaranteed to be independent given
certain evidence?

§  If no, can prove with a counter example
§  I.e., pick a set of CPT’s, and show that the independence

assumption is violated by the resulting distribution

§  If yes, can prove with
§  Algebra (tedious)
§  D-separation (analyzes graph)

28

P (xi|x1 · · ·xi−1) = P (xi|parents(Xi))

D-Separation
§  Question: Are X and Y

conditionally independent
given evidence vars {Z}?
§  Yes, if X and Y “separated” by Z
§  Consider all (undirected) paths

from X to Y

§  No active paths = independence!

§  A path is active if each triple
is active:
§  Causal chain A → B → C where B

is unobserved (either direction)
§  Common cause A ← B → C

where B is unobserved
§  Common effect (aka v-structure)

 A → B ← C where B or one of its
descendents is observed

§  All it takes to block a path is
a single inactive segment

Active Triples Inactive Triples

D-Separation

§  Given query
§  Shade all evidence nodes
§  For all (undirected!) paths between and

§ Check whether path is active
§  If active return

§  (If reaching this point all paths have been
checked and shown inactive)
§ Return

30

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

?

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

6

Example

R

T

B

D

L

T’

Yes

Yes

Yes

31

All Conditional Independences

§  Given a Bayes net structure, can run d-
separation to build a complete list of
conditional independences that are
necessarily true of the form

§  This list determines the set of probability
distributions that can be represented by
Bayes’ nets with this graph structure

32

Xi ⊥⊥ Xj |{Xk1 , ..., Xkn}

Topology Limits Distributions
§  Given some graph

topology G, only certain
joint distributions can
be encoded

§  The graph structure
guarantees certain
(conditional)
independences

§  (There might be more
independence)

§  Adding arcs increases
the set of distributions,
but has several costs

§  Full conditioning can
encode any distribution

X

Y

Z

X
Y

Z

X
Y

Z

33

X
Y

Z X
Y

Z

X
Y

Z X
Y

Z X
Y

Z

X

Y

Z

X

Y

Z

{X ⊥⊥ Z | Y }

{X ⊥⊥ Y,X ⊥⊥ Z, Y ⊥⊥ Z,

X ⊥⊥ Z | Y,X ⊥⊥ Y | Z, Y ⊥⊥ Z | X}

{}

Inference by Enumeration

§  Given unlimited time, inference in BNs is easy
§  Recipe:

§  State the marginal probabilities you need
§  Figure out ALL the atomic probabilities you need
§  Calculate and combine them

§  Example:

34

B E

A

J M

Example: Enumeration
§  In this simple method, we only need the BN to

synthesize the joint entries

35

Variable Elimination

§  Why is inference by enumeration so slow?
§  You join up the whole joint distribution before you sum

out the hidden variables
§  You end up repeating a lot of work!

§  Idea: interleave joining and marginalizing!
§  Called “Variable Elimination”
§  Still NP-hard, but usually much faster than inference

by enumeration

36

7

§  Track objects called factors
§  Initial factors are local CPTs (one per node)

§  Any known values are selected
§  E.g. if we know , the initial factors are

§  VE: Alternately join factors and eliminate variables 37

Variable Elimination Outline

+r	 0.1	
-‐r	 0.9	

+r	 +t	 0.8	
+r	 -‐t	 0.2	
-‐r	 +t	 0.1	
-‐r	 -‐t	 0.9	

+t	 +l	 0.3	
+t	 -‐l	 0.7	
-‐t	 +l	 0.1	
-‐t	 -‐l	 0.9	

+t	 +l	 0.3	
-‐t	 +l	 0.1	

+r	 0.1	
-‐r	 0.9	

+r	 +t	 0.8	
+r	 -‐t	 0.2	
-‐r	 +t	 0.1	
-‐r	 -‐t	 0.9	

T

R

L

Variable Elimination Example

38

Sum out R

T

L

+r	 +t	 0.08	
+r	 -‐t	 0.02	
-‐r	 +t	 0.09	
-‐r	 -‐t	 0.81	

+t	 +l	 0.3	
+t	 -‐l	 0.7	
-‐t	 +l	 0.1	
-‐t	 -‐l	 0.9	

+t	 0.17	
-‐t	 0.83	

+t	 +l	 0.3	
+t	 -‐l	 0.7	
-‐t	 +l	 0.1	
-‐t	 -‐l	 0.9	

T

R

L

+r	 0.1	
-‐r	 0.9	

+r	 +t	 0.8	
+r	 -‐t	 0.2	
-‐r	 +t	 0.1	
-‐r	 -‐t	 0.9	

+t	 +l	 0.3	
+t	 -‐l	 0.7	
-‐t	 +l	 0.1	
-‐t	 -‐l	 0.9	

Join R

R, T

L

Variable Elimination Example

Join T Sum out T
T, L L

* VE is variable elimination

T

L

+t	 0.17	
-‐t	 0.83	

+t	 +l	 0.3	
+t	 -‐l	 0.7	
-‐t	 +l	 0.1	
-‐t	 -‐l	 0.9	

+t	 +l	 0.051	
+t	 -‐l	 0.119	
-‐t	 +l	 0.083	
-‐t	 -‐l	 0.747	

+l	 0.134	
-‐l	 0.886	

Example

Choose A

40

Example

Choose E

Finish with B

Normalize

41

General Variable Elimination
§  Query:

§  Start with initial factors:
§  Local CPTs (but instantiated by evidence)

§  While there are still hidden variables (not Q or evidence):
§  Pick a hidden variable H
§  Join all factors mentioning H
§  Eliminate (sum out) H

§  Join all remaining factors and normalize

42

8

Another (bit more abstractly worked
out) Variable Elimination Example

43

Computational complexity critically depends on the largest factor being
generated in this process. Size of factor = number of entries in table. In
example above (assuming binary) all factors generated are of size 2 --- as
they all only have one variable (Z, Z, and X3 respectively).

§  For the query P(Xn|y1,…,yn) work through the following two different
orderings as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1,
Z. What is the size of the maximum factor generated for each of the
orderings?

§  Answer: 2n versus 2 (assuming binary)
§  In general: the ordering can greatly affect efficiency.

Variable Elimination Ordering

44

…

…

Computational and Space
Complexity of Variable Elimination

§  The computational and space complexity of variable
elimination is determined by the largest factor

§  The elimination ordering can greatly affect the size of the
largest factor.
§  E.g., previous slide’s example 2n vs. 2

§  Does there always exist an ordering that only results in
small factors?
§  No!

45

Worst Case Complexity?
§  Consider the 3-SAT clause:

 which can be encoded by the following Bayes’ net:

§  If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
§  Subtlety: why the cascaded version of the AND rather than feeding all OR clauses into a single

AND? Answer: a single AND would have an exponentially large CPT, whereas with representation
above the Bayes’ net has small CPTs only.

§  Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.
46

…

…

Polytrees

§  A polytree is a directed graph with no
undirected cycles

§  For poly-trees you can always find an
ordering that is efficient
§  Try it!!

§  Cut-set conditioning for Bayes’ net
inference
§ Choose set of variables such that if removed

only a polytree remains
§  Think about how the specifics would work out! 47

Approximate Inference: Sampling
§  Basic idea:

§  Draw N samples from a sampling distribution S
§  Compute an approximate posterior probability
§  Show this converges to the true probability P

§  Why? Faster than computing the exact answer

§  Prior sampling:
§  Sample ALL variables in topological order as this can be done quickly

§  Rejection sampling for query
§  = like prior sampling, but reject when a variable is sampled inconsistent

with the query, in this case when a variable Ei is sampled differently
from ei

§  Likelihood weighting for query
§  = like prior sampling but variables Ei are not sampled, when it’s their

turn, they get set to ei, and the sample gets weighted by
 P(ei | value of parents(ei) in current sample)

§  Gibbs sampling: repeatedly samples each non-evidence variable
conditioned on all other variables à can incorporate downstream evidence

48

9

Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

49

+c	 0.5	
-‐c	 0.5	

+c	
	

+s	 0.1	
-‐s	 0.9	

-‐c	
	

+s	 0.5	
-‐s	 0.5	

+c	
	

+r	 0.8	
-‐r	 0.2	

-‐c	
	

+r	 0.2	
-‐r	 0.8	

+s	
	
	
	

+r	
	

+w	 0.99	
-‐w	 0.01	

-‐r	
	

+w	 0.90	
-‐w	 0.10	

-‐s	
	
	
	

+r	
	

+w	 0.90	
-‐w	 0.10	

-‐r	
	

+w	 0.01	
-‐w	 0.99	

Samples:

+c, -s, +r, +w
-c, +s, -r, +w

…

Example
§  We’ll get a bunch of samples from the BN:

 +c, -s, +r, +w
 +c, +s, +r, +w
 -c, +s, +r, -w
 +c, -s, +r, +w
 -c, -s, -r, +w

§  If we want to know P(W)
§  We have counts <+w:4, -w:1>
§  Normalize to get P(W) = <+w:0.8, -w:0.2>
§  This will get closer to the true distribution with more samples
§  Can estimate anything else, too
§  What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
§  Fast: can use fewer samples if less time

Cloudy

Sprinkler Rain

WetGrass

C

S R

W

50

Likelihood Weighting

51

+c	 0.5	
-‐c	 0.5	

+c	
	

+s	 0.1	
-‐s	 0.9	

-‐c	
	

+s	 0.5	
-‐s	 0.5	

+c	
	

+r	 0.8	
-‐r	 0.2	

-‐c	
	

+r	 0.2	
-‐r	 0.8	

+s	
	
	
	

+r	
	

+w	 0.99	
-‐w	 0.01	

-‐r	
	

+w	 0.90	
-‐w	 0.10	

-‐s	
	
	
	

+r	
	

+w	 0.90	
-‐w	 0.10	

-‐r	
	

+w	 0.01	
-‐w	 0.99	

Samples:

+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

Likelihood Weighting
§  Sampling distribution if z sampled and e fixed evidence

§  Now, samples have weights

§  Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W

52

Gibbs Sampling
§  Idea: instead of sampling from scratch, create samples

that are each like the last one.

§  Procedure: resample one variable at a time, conditioned
on all the rest, but keep evidence fixed.

§  Properties: Now samples are not independent (in fact
they’re nearly identical), but sample averages are still
consistent estimators!

§  What’s the point: both upstream and downstream
variables condition on evidence.

53

