CS 188: Artificial Intelligence

Review of Utility, MDPs, RL,
Bayes' nets
Bayes' nets

DISCLAIMER: It is insufficient to simply study these slides, they are merely meant as a quick refresher of the high-level ideas covered. You need to study all materials covered in lecture, section, assignments and projects !

Pieter Abbeel - UC Berkeley Many slides adapted from Dan Klein

Preferences

- An agent must have preferences among:
- Prizes: A, B, etc.
- Lotteries: situations with uncertain prizes

$$
L=[p, A ;(1-p), B]
$$

- Notation:

$A \succ B$	A preferred over B
$A \sim B$	indifference between A and B
$A \succeq B$	B not preferred over A

$A \succeq B \quad B$ not preferred over A

Rational Preferences

- Preferences of a rational agent must obey constraints.
- The axioms of rationality:

Orderability

$$
(A \succ B) \vee(B \succ A) \vee(A \sim B)
$$

Transitivity
$(A \succ B) \wedge(B \succ C) \Rightarrow(A \succ C)$
Continuity
$A \succ B \succ C \Rightarrow \exists p[p, A ; 1-p, C] \sim B$
Substitutability
$A \sim B \Rightarrow[p, A ; 1-p, C] \sim[p, B ; 1-p, C]$
Monotonicity
$(p \geq q \Leftrightarrow[p, A ; 1-p, B] \succeq[q, A ; 1-q, B])$

- Theorem: Rational preferences imply behavior describable as maximization of expected utility

Recap MDPs and RL

- Markov Decision Processes (MDPs)
- Formalism (S, A, T, R, gamma)
- Solution: policy pi which describes action for each state
- Value Iteration (vs. Expectimax --- VI more efficient through dynamic programming)
- Policy Evaluation and Policy Iteration
- Reinforcement Learning (don't know T and R)
- Model-based Learning: estimate T and R first
- Model-free Learning: learn without estimating T or R
- Direct Evaluation [performs policy evaluation]
- Temporal Difference Learning [performs policy evaluation]
- Q-Learning [learns optimal state-action value function Q^{*}]
- Policy Search [learns optimal policy from subset of all policies]
- Exploration
- Function approximation --- generalization

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $\mathrm{T}\left(\mathrm{s}, \mathrm{a}, \mathrm{s}^{\prime}\right)$ - Prob that a from s leads to s
- i.e., P(s' | s,a)
- Also called the mode
- A reward function $R\left(s, a, s^{\prime}\right)$,
- Sometimes just R(s) or R(s')
- A start state (or distribution)
- Maybe a terminal state
- MDPs are a family of nondeterministic search problems
- Reinforcement learning: MDPs where we don't know the transition or reward functions
Maximum expected utility (MEU) principle:
- Choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilies
- E.g., a lookup table for perfect tictactoe, reflex vacuum cleaner

6

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means:

$$
\begin{aligned}
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}, S_{t-1}=s_{t-1}, A_{t-1}, \ldots S_{0}=s_{0}\right) \\
& \quad= \\
& P\left(S_{t+1}=s^{\prime} \mid S_{t}=s_{t}, A_{t}=a_{t}\right)
\end{aligned}
$$

- Can make this happen by proper choice of state space

Complete Procedure

- 1. Run value iteration (off-line)
- This results in finding V^{*}
- 2. Agent acts. At time the agent is in state s_{t} and takes the action a_{t} :

$$
\arg \max _{a} \sum_{s^{\prime}} T\left(s_{t}, a, s^{\prime}\right)\left[R\left(s_{t}, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

Sample-Based Policy Evaluation?

$$
V_{i+1}^{\pi}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{i}^{\pi}\left(s^{\prime}\right)\right]
$$

- Who needs T and R? Approximate the expectation with samples (drawn from T !)
sample $_{1}=R\left(s, \pi(s), s_{1}^{\prime}\right)+\gamma V_{i}^{\pi}\left(s_{1}^{\prime}\right)$ sample $_{2}=R\left(s, \pi(s), s_{2}^{\prime}\right)+\gamma V_{i}^{\pi}\left(s_{2}^{\prime}\right)$ sample $_{k}=R\left(s, \pi(s), s_{k}^{\prime}\right)+\gamma V_{i}^{\pi}\left(s_{k}^{\prime}\right)$

Almost! (i) Will only be in state s once and then land in s' hence have only one
sample \rightarrow have to keep all sample \rightarrow have to keep all
samples around? (ii) Where samples around? (ii) Where
do we get value for s'? do we get value for s ?

Value Iteration

- Idea:

- $\mathrm{V}_{\mathrm{i}}^{*}(\mathrm{~s})$: the expected discounted sum of rewards accumulated when starting from state s and acting optimally for a horizon of i time steps
- Value iteration:
- Start with $\mathrm{V}_{0}{ }^{*}(\mathrm{~s})=0$, which we know is right (why?)
- Given $\mathrm{V}_{\mathrm{i}}^{*}$, calculate the values for all states for horizon $\mathrm{i}+1$ $V_{i+1}^{*}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{i}^{*}\left(s^{\prime}\right)\right]$
- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
- Basic idea: approximations get refined towards optimal values
- Policy may converge long before values do
- At convergence, we have found the optimal value function V^{*} for the discounted infinite horizon problem, which satisfies the Bellman equations: $\forall s \in S: \quad V^{*}(s)=\max _{a} \sum T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$

Policy Iteration

- Policy evaluation: with fixed current policy π, find values with simplified Bellman updates:
- Iterate for $\mathrm{i}=0,1,2, \ldots$ until values converge
$\forall s: \quad V_{i+1}^{\pi_{k}}(s) \leftarrow \sum_{s^{\prime}} T\left(s, \pi_{k}(s), s^{\prime}\right)\left[R\left(s, \pi_{k}(s), s^{\prime}\right)+\gamma V_{i}^{\pi_{k}}\left(s^{\prime}\right)\right]$
- Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$
\pi_{k+1}(s)=\underset{a}{\arg \max } \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{\pi_{k}}\left(s^{\prime}\right)\right]
$$

- Will converge (policy will not change) and resulting policy optimal

Temporal-Difference Learning

- Big idea: learn from every experience!
- Update V(s) each time we experience (s,a,s',r)
- Likely s' will contribute updates more often
- Temporal difference learning
- Policy still fixed!
- Move values toward value of whatever
 successor occurs: running average!

Sample of $\mathbf{V}(\mathbf{s}): \quad$ sample $=R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)$
Update to $\mathbf{V}(\mathbf{s}): \quad V^{\pi}(s) \leftarrow(1-\alpha) V^{\pi}(s)+(\alpha)$ sample

Same update: $\quad V^{\pi}(s) \leftarrow V^{\pi}(s)+\alpha\left(\right.$ sample $-V^{\pi}(s)_{12}$

Exponential Moving Average

- Exponential moving average
- Makes recent samples more important

$$
\bar{x}_{n}=\frac{x_{n}+(1-\alpha) \cdot x_{n-1}+(1-\alpha)^{2} \cdot x_{n-2}+\ldots}{1+(1-\alpha)+(1-\alpha)^{2}+\ldots}
$$

- Forgets about the past (distant past values were wrong anyway)
- Easy to compute from the running average

$$
\bar{x}_{n}=(1-\alpha) \cdot \bar{x}_{n-1}+\alpha \cdot x_{n}
$$

- Decreasing learning rate can give converging averages

Q-Learning

- Learn Q*(s,a) values
- Receive a sample (s,a,s',r)
- Consider your new sample estimate: $Q^{*}(s, a)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)\right]$ sample $=R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q\left(s^{\prime}, a^{\prime}\right)$
- Incorporate the new estimate into a running average: $Q(s, a) \leftarrow(1-\alpha) Q(s, a)+(\alpha)[$ sample $]$
- Amazing result: Q-learning converges to optimal policy
- If you explore enough
- If you make the learning rate small enough but not decrease it too quickly!
- Neat property: off-policy learning
- learn optimal policy without following it

Exploration Functions

- Simplest: random actions (ε greedy)
- Every time step, flip a coin
- With probability ε, act randomly
- With probability $1-\varepsilon$, act according to current policy
- Problems with random actions?
- You do explore the space, but keep thrashing around once learning
is done
- One solution: lower ε over time
- Exploration functions
- Explore areas whose badness is not (yet) established
- Take a value estimate and a count, and returns an optimistic utility, e.g. $f(u, n)=u+k / n$ (exact form not important)
$Q_{i+1}(s, a) \leftarrow(1-\alpha) Q_{i}(s, a)+\alpha\left(R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right)$
now becomes:
$Q_{i+1}(s, a) \leftarrow(1-\alpha) Q_{i}(s, a)+\alpha\left(R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} f\left(Q_{i}\left(s^{\prime}, a^{\prime}\right), N\left(s^{\prime}, a^{\prime}\right)\right)\right)$

Feature-Based Representations

- Solution: describe a state using a vector of features
- Features are functions from states to real numbers (often 0/1) that capture important properties of the state
- Example features:

Distance to closest ghost

- Distance to closest dot
- Number of ghosts
- 1 / (dist to dot) ${ }^{2}$
- Is Pacman in a tunnel? ($0 / 1$)
- etc.
- Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Detour: Q-Value Iteration

- Value iteration: find successive approx optimal values
- Start with $\mathrm{V}_{0}(\mathrm{~s})=0$, which we know is right (why?)
- Given V_{i}, calculate the values for all states for depth $\mathrm{i}+1$:

$$
V_{i+1}(s) \leftarrow \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{i}\left(s^{\prime}\right)\right.
$$

- But Q-values are more useful!
- Start with $\mathrm{Q}_{0}(\mathrm{~s}, \mathrm{a})=0$, which we know is right (why?)
- Given Q_{i}, calculate the q-values for all q-states for depth $i+1$:
$Q_{i+1}(s, a) \leftarrow \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q_{i}\left(s^{\prime}, a^{\prime}\right)\right]$

Policy Search

- Problem: often the feature-based policies that work well aren' t the ones that approximate V / Q best
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter
- Simplest policy search:
- Start with an initial linear value function or Q-function
- Nudge each feature weight up and down and see if your policy is better than before
- Problems:
- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

Probability recap

- Conditional probability $\quad P(x \mid y)=\frac{P(x, y)}{P(y)}$
- Product rule $\quad P(x, y)=P(x \mid y) P(y)$
- Chain rule $P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right)$..
- X, Y independent iff: $\forall x, y: P(x, y)=P(x) P(y)$
equivalently, iff: $\quad \forall x, y: P(x \mid y)=P(x)$
equivalently, iff: $\quad \forall x, y: P(y \mid x)=P(y)$
- X and Y are conditionally independent given Z iff:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

equivalently, iff: $\forall x, y, z: P(x \mid y, z)=P(x \mid z)$ equivalently, iff: $\forall x, y, z: P(y \mid x, z)=P(y \mid z)$

Inference by Enumeration

- P(sun)?
- P (sun | winter)?
- $P($ sun | winter, hot)?

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Bayes' Nets Recap

- Representation
- Chain rule -> Bayes' net = DAG + CPTs
- Conditional Independences
- D-separation
- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case exponential complexity, often better)
- Probabilistic inference is NP-complete
- Sampling (approximate)

Chain Rule \rightarrow Bayes net

- Chain rule: can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}
$$

- Bayes nets: make conditional independence assumptions of the form:
$P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
giving us:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

24

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Example:
$P(+$ cavity,+ catch, \neg toothache $)$
- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

Example: Alarm Network

						E	P(E)		$\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E})$
						+e	0.00		
$\rightarrow \mathrm{b}$	0.999					$\neg \mathrm{e}$	0.99		
						B	E	A	
						+b	+e	+a	0.95
						+b	+e	-a	0.05
						+b	$\neg \mathrm{e}$	+a	0.94
A	J	P(J\|A)	A	M	$\mathrm{P}(\mathrm{M} \mid \mathrm{A})$	+b	$\neg \mathrm{e}$	\neg -	0.06
+a	+ ${ }^{\text {j}}$	0.9	+a	+m	0.7	$\neg \mathrm{b}$	+e	+a	0.29
+a	-j	0.1	+a	-m	0.3	$\neg \mathrm{b}$	+e	\neg a	0.71
-a	+j	0.05	-a	+m	0.01	$\neg \mathrm{b}$	-e	+a	0.001
-a	$\neg \mathrm{j}$	0.95	-a	$\neg \mathrm{m}$	0.99	$\neg \mathrm{b}$	-e	ᄀa	0.999

Size of a Bayes' Net for $P\left(X_{1}, X_{2}, \ldots X_{n}\right)$

- How big is a joint distribution over N Boolean variables? 2^{N}
- Size of representation if we use the chain rule 2^{N}
- How big is an N -node net if nodes have up to k parents? $\mathrm{O}\left(\mathrm{N}^{*} 2^{\mathrm{k}+1}\right)$
- Both give you the power to calculate
- BNs:
- Huge space savings!
- Easier to elicit local CPTs
- Faster to answer queries

Bayes Nets: Assumptions

- Assumptions made by specifying the graph:
$P\left(x_{i} \mid x_{1} \cdots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
- Given a Bayes net graph additional conditional independences can be read off directly from the graph
- Question: Are two nodes guaranteed to be independent given certain evidence?
- If no, can prove with a counter example
I.e., pick a set of CPT's, and show that the independence assumption is violated by the resulting distribution
- If yes, can prove with
- Algebra (tedious)
- D-separation (analyzes graph)

D-Separation

- Question: Are X and Y conditionally independent given evidence vars $\{Z\}$?
- Yes, if X and Y "separated" by Z

Consider all (undirected) paths
from X to Y

- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
where B is unobserved
Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its A
descendents is observed
- All it takes to block a path is a single inactive segment

Inactive Triples

All Conditional Independences

- Given a Bayes net structure, can run dseparation to build a complete list of conditional independences that are necessarily true of the form

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- This list determines the set of probability distributions that can be represented by Bayes' nets with this graph structure

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)

Adding arcs increases the set of distributions, but has several costs

- Full conditioning can encode any distribution

Inference by Enumeration

- Given unlimited time, inference in BNs is easy
- Recipe:
- State the marginal probabilities you need
- Figure out ALL the atomic probabilities you need
- Calculate and combine them
- Example:
$P(+b \mid+j,+m)=$ $\frac{P(+b,+j,+m)}{P(+j,+m)}$

Example: Enumeration

- In this simple method, we only need the BN to synthesize the joint entries

$$
\begin{aligned}
& P(+b,+j,+m)= \\
& \quad P(+b) P(+e) P(+a \mid+b,+e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(+e) P(-a \mid+b,+e) P(+j \mid-a) P(+m \mid-a)+ \\
& P(+b) P(-e) P(+a \mid+b,-e) P(+j \mid+a) P(+m \mid+a)+ \\
& \\
& P(+b) P(-e) P(-a \mid+b,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables
- You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration

Example				
$P(B \mid j, m) \propto P(B, j, m)$				
	$P(E)$	$P(A \mid B, E)$	$P(j \mid A)$	$P(m \mid A)$
Choose A				
$\begin{aligned} & P(A \mid B, E) \\ & P(j \mid A) \\ & P(m \mid A) \end{aligned}$		$\stackrel{\text { x }}{ }{ }^{\text {a }}$ P $(j, m, A \mid B, E) \underset{\sum}{\sum} P(j, m \mid B, E)$		
	$P(B)$	$P(E)$	$P(j, m \mid B, E)$	

Example	
$P(B)$	$P(E) \quad P(j, m \mid B, E)$
$\begin{aligned} & \text { Choose E } \\ & \begin{array}{l} P(E) \\ P(j, m \mid B, E) \end{array} \stackrel{\square}{x} P(j, m, E \mid B) \quad \underset{\sim}{\sum} P(j, m \mid B) \end{aligned}$	
$P(B)$	$P(j, m \mid B)$
Finish with B$\begin{gathered} P(B) \\ P(j, m \mid B) \end{gathered} \stackrel{x}{ } P(j, m, B) \stackrel{\text { Normalize }}{ } P(B \mid j, m)$	

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H
- Join all remaining factors and normalize

Another (bit more abstractly worked out) Variable Elimination Example

Query: $P\left(X_{3} \mid Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)$
Start by inserting evidence, which gives the following initial factors:
$p(Z) p\left(X_{1} \mid Z\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{1} \mid X_{1}\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)$
Eliminate X_{1}, this introduces the factor $f_{1}\left(Z, y_{1}\right)=\sum_{x_{1}} p\left(x_{1} \mid Z\right) p\left(y_{1} \mid x_{1}\right)$, and
$p(Z) f_{1}\left(Z, y_{1}\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)$
Eliminate X_{2}, this introduces the factor $f_{2}\left(Z, y_{2}\right)=\sum_{x_{2}} p\left(x_{2} \mid Z\right) p\left(y_{2} \mid x_{2}\right)$, and $p(Z) f_{1}\left(Z, y_{1}\right) f_{2}\left(Z, y_{2}\right) p\left(X_{3} \mid Z\right) p p\left(y_{3} \mid X_{3}\right)$
Eliminate Z, this introduces the factor
$f_{3}\left(y_{1}, y_{2}, y_{3}, X_{3}\right)=\sum_{:} p(z) f_{1}\left(z, y_{1}\right) f_{2}\left(z, y_{2}\right) p\left(X_{3} \mid z\right) p\left(y_{3} \mid X_{3}\right)$, and:
$f_{3}\left(y_{1}, y_{2}, y_{3}, X_{3}\right)$
Normalizing over X_{3} gives $P\left(X_{3} \mid y_{1}, y_{2}, y_{3}\right)$.
Computational complexity critically depends on the largest factor being
generated in this process. Size of factor = number of entries in table. In
example above (assuming binary) all factors generated are of size 2 --- as
they all only have one variable (Z, Z, and $X 3$ respectively)

Computational and Space

 Complexity of Variable Elimination- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
- E.g., previous slide's example 2^{n} vs. 2
- Does there always exist an ordering that only results in small factors?
- No!

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
- Try it!!
- Cut-set conditioning for Bayes' net inference
- Choose set of variables such that if removed only a polytree remains
- Think about how the specifics would work out! ${ }^{7}$

Variable Elimination Ordering

- For the query $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ work through the following two different orderings as done in previous slide: $\mathrm{Z}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}$ and $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}$, Z. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2^{n} versus 2 (assuming binary)
- In general: the ordering can greatly affect efficiency.

Approximate Inference: Sampling

- Basic idea:
- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P
- Why? Faster than computing the exact answer
- Prior sampling:
- Sample ALL variables in topological order as this can be done quickly
- Rejection sampling for query $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- = like prior sampling, but reject when a variable is sampled inconsistent with the query, in this case when a variable E_{i} is sampled differently from e_{i}
- Likelihood weighting for query $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- = like prior sampling but variables E_{i} are not sampled, when it's their turn, they get set to e_{i}, and the sample gets weighted by $P\left(e_{i} \mid\right.$ value of parents $\left(\mathrm{e}_{\mathrm{i}}\right)$ in current sample)
- Gibbs sampling: repeatedly samples each non-evidence variable 48 conditioned on all other variables \rightarrow can incorporate downstream evidence

Example

- We' Il get a bunch of samples from the BN:
$+c,-s,+r,+w$
$+\mathrm{c},+\mathrm{s},+\mathrm{r},+\mathrm{w}$
$-\mathrm{c}, \mathrm{+s}+\mathrm{r},$,
$+c,-s,+r,+w$
$-c,-s,-r,+w$

- If we want to know $\mathrm{P}(\mathrm{W})$
- We have counts <+w:4, -w:1>
- Normalize to get $\mathrm{P}(\mathrm{W})=<+w: 0.8,-w: 0.2>$
- This will get closer to the true distribution with more samples
- Can estimate anything else, too
- What about $P(C \mid+w)$? $P(C \mid+r,+w)$? $P(C \mid-r,-w)$?
- Fast: can use fewer samples if less time

Likelihood Weighting

- Sampling distribution if z sampled and e fixed evidence

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(Z_{i}\right)\right)
$$

- Now, samples have weights

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(E_{i}\right)\right)
$$

- Together, weighted sampling distribution is consistent

$$
\begin{aligned}
S_{\mathrm{WS}}(z, e) \cdot w(z, e) & =\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(e_{i}\right)\right) \\
& =P(\mathbf{z}, \mathrm{e})
\end{aligned}
$$

Gibbs Sampling

- Idea: instead of sampling from scratch, create samples that are each like the last one.
- Procedure: resample one variable at a time, conditioned on all the rest, but keep evidence fixed.
- Properties: Now samples are not independent (in fact they' re nearly identical), but sample averages are still consistent estimators!
- What's the point: both upstream and downstream variables condition on evidence.

